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This article investigates the impact of inspection policy and lead time reduction on an

integrated vendor–buyer inventory system. We assume that an arriving order contains some

defective items. The buyer adopts a sublot sampled inspection policy to inspect selected items.

The number of defective items in the sublot sampling is a random variable. The buyer’s

lead time is assumed reducible by adding crash cost. Two integrated inventory models with

backorders and lost sales are derived. We first assume that the lead time demand follows

a normal distribution, and then relax the assumption about the lead time demand distribution

function and apply the minimax distribution-free procedure to solve the problem.

Consequently, the order quantity, reorder point, lead time and the number of shipments

per lot from the vendor to the buyer are decision variables. Iterative procedures are developed

to obtain the optimal strategy.

Keywords: Integrated inventory model; Defective items; Sub-lot sampling; Lead time reduction; Minimax
distribution-free procedure

1. Introduction

A vendor–buyer channel coordinates to achieve better
joint profit by optimizing the integrated inventory

policy. This vendor–buyer coordination policy has
received significant attention among researchers over

the past two decades. Goyal (1976) first developed an
integrated inventory model for a single supplier–single

customer problem. More interesting and relevant papers
related to integrated inventory models have been

asserted such as Banerjee (1986), Goyal (1988), Ha

and Kim (1997), Hill (1999), Goyal and Nebebe (2000)
and Kelle et al. (2003). These researches focused on the

production shipment schedule in terms of the number
and batch sizes transferred between both parties under

perfect quality.

As a result of imperfect vendor production, careless

handling and/or damage in transit, an arriving order

lot often contains some defective items. These defective

items will influence the on-hand inventory level, service

level and the frequency of orders in the inventory

system. Therefore, to adjust the assumption of imperfect

quality, many researchers proposed inventory models

involving defective items. Porteus (1986) and Rosenblatt

and Lee (1986) were the first two who introduced the

concept and developed inventory models to discuss the

relationship between an imperfect production process

and an optimal lot size. Some similar problems related

to quality and lot size have been discussed by several

authors such as Schwaller (1988), Paknjad et al. (1995),

Ouyang et al. (1999b), Salameh and Jaber (2000), Wu

and Ouyang (2000, 2001), Chang (2003), Balkhi (2004),

Hou and Lin (2004) and Papachristos and Konstantaras

(2006). The above models tackled defective items*Corresponding author. Email: kunshan@mail.tku.edu.tw
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focusing on lot sizing under an EOQ/EPQ model. In
a recent paper, Huang (2002) developed an integrated
vendor–buyer cooperative inventory model for items
with imperfect quality and assumed that the
number of defective items followed a given probability
density function. However, both shortages and lead
time reduction were not considered in Huang’s (2002)
model. Later, Khouja (2003) used the assumptions of
Porteus (1986) and Rosenblatt and Lee (1986) to
formulate producer–retailer supply chain models in
which the proportion of defective products increases
with increased production lot sizes. Still, lead time
reduction was not considered in Khouja’s (2003) model.
Recently, inventory models that considered lead time

as a decision variable have been developed. Lead time
usually consists of the following components: setup
time, process time, wait time, move time and queue time
(Tersine 1994). In many practical situations, lead time
can be reduced by adding an additional crash cost. In
other words, lead time is controllable. By shortening the
lead time, we can lower the safety stock level, reduce the
stock-out loss and improve the customer service level to
gain competitive advantages. Liao and Shyu (1991) first
presented a probability inventory model in which lead
time was a unique decision variable. Later, Ben-Daya
and Raouf (1994) extended Liao and Shyu’s (1991)
model by considering both lead time and ordering
quantity as decision variables where shortages are not
allowed. Ouyang et al. (1996) generalized Ben-Daya and
Raouf ’s (1994) model by allowing shortages. Some
similar problems related to lead time reduction have
been discussed by Ouyang and Chuang (2000), Pan and
Hsiao (2001), Ouyang and Chang (2002), Pan et al.
(2004) and Yang et al. (2005). The above inventory
models focused on determining the optimal policy
in controllable lead time for the buyer only. Pan
and Yang (2002) proposed an integrated inventory
model with controllable lead time. However, both
shortages and imperfect quality were not taken into
account, and the reorder point of the buyer is given in
their model.
Motivated by the need for the optimal policies that

coordinate the operations of both partners (vendor and
buyer), we present in this article an analysis of the
vendor–buyer integrated inventory model with imperfect
quality. We assumed that the vendor delivers the order
quantity to the buyer in several equal-sized shipments
and each lot contains some defective items. When the
arrival quantity is large or the inspection process is time
consuming, the buyer adopts a sublot sampling inspec-
tion policy to inspect the selected items. The inspection
process is assumed to be nondestructive and error-free.
The defective items found are discarded. We also
assumed that uninspected defective items are not
replaceable, but will cause a treatment procedure.

Therefore, our models adopt an extra cost for the
inspection of each lot and a treatment cost for
uninspected defective items. The inventory is continu-
ously reviewed and whenever the inventory level falls to
the reorder point a successive delivery is scheduled to
arrive. Consequently, we consider integrated inventory
models with a mixture of backorders and lost sales in
which the order quantity, reorder point, lead time and
number of shipments from the vendor to the buyer are
decision variables. We first assumed that the lead time
demand follows a normal distribution. Next, we relaxed
this assumption and merely assumed that the first and
second moments of the lead time demand probability
distribution are known and finite. The second model is
solved using the minimax distribution-free approach
which is to find the most unfavorable distribution for
each decision variable and then minimizing over the
decision variables. The minimax distribution-free
approach was the original work by Scarf (1958) and
later expanded by many authors such as Gallego and
Moon (1993), Ouyang and Wu (1998), Moon and Silver
(2000) and Silver and Moon (2001). Finally, sensitivity
analysis and numerical examples are provided to
illustrate the results.

2. Notations and assumptions

To develop the proposed models, we adopt the following
notations and assumptions:

Notations:

D Expected demand per unit time on the buyer.
P Production rate of the vendor.
Ab Buyer’s ordering cost per order.
Av Vendor’s set-up cost per set-up.
F Transportation cost per delivery.
hv Vendor’s holding cost per item per unit time.
hb Buyer’s non-defective (including uninspected

defective items) holding cost per item per unit
time.

� Buyer’s shortage cost per unit short.
�0 Buyer’s profit per unit.
y Buyer’s unit inspection cost.
w Buyer’s unit treatment cost for uninspected

defective items.
� Fraction of the demand during the stock-out

period will be backordered, �2 [0, 1].
� Defective rate in an order lot (independent of

lot size) which is a random variable and has
a probability density function (p.d.f.) g(�),
0< �<1, with finite mean M�.

Q Order quantity of the buyer (decision variable).
� Buyer’s proportion of quantity inspected per

shipment, 0< �� 1.
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m The number of shipments delivered from the

vendor to the buyer in one production cycle,

a positive integer (decision variable).
Z Number of defective items among the inspected

�Q/m units, a random variable.
r Reorder point of the buyer (decision variable).
L Length of lead time for the buyer (decision

variable).
X The lead time demand which has a p.d.f. f (x )

with finite mean DL and standard deviation �
ffiffiffiffi
L

p
,

where � denotes the standard deviation of the

demand per unit time.
E(�) Mathematical expectation.
xþ Maximum value of x and 0, i.e. xþ¼max{x, 0}.

Assumptions:

(1) There is a single-vendor and single-buyer for a

single product in this model.
(2) The vendor’s production rate of expected non-

defective items is finite and greater than the buyer’s

demand rate, i.e., (1�M� )P>D.
(3) The reorder point r¼ the expected demand

during lead timeþ safety stock (SS ), and

SS¼ k� (standard deviation of lead time

demand), that is,

r ¼ DLþ k�
ffiffiffiffi
L

p
, ð1Þ

where k is a safety factor.
(4) The buyer orders a lot of size Q. The vendor

produces quantity Q at one setup and delivers in

quantity Q/m in each shipment. That is, the buyer

will receive the order quantity in m equal-size

shipments.
(5) The inventory is continuously reviewed. The

successive deliveries are arranged to arrive when

the buyer’s on hand inventory reaches the reorder

point r.
(6) An arrival lot may contain some defective items

and the proportion defective as in �. Upon arrival,

�Q/m units will be inspected and Z defective units

will be discovered and discarded. After the

inspection process the remaining (Q/m)�Z items

enter the inventory to meet the demand, which will

contain ( pQ/m)�Z uninspected defective items.

The uninspected defective items are not replaceable

but will cause a treatment cost.
(7) Inspection is non-destructive and error-free.

Because the sublot sampled inspection process is

considered a speedy action, the length of the

inspection period is neglected.
(8) The lead time L has n mutually independent

components. The i-th component has minimum

duration ai, normal duration bi, and a crash cost
per unit time ci. For further convenience, we
rearrange ci such that c1� c2� � � � � cn.

(9) The lead time components are crashed one at a
time starting with component 1 (because it has the
minimum unit crash cost), and then component 2,
and so on.

(10) The extra costs incurred by the vendor will be fully
transferred to the buyer if shortened lead time is
requested.

3. Basic model

In this section we establish an integrated inventory
model in which an arrival lot contains some defective
items. The defective rate, �, is a random variable. In our
model, shortages are allowed and a mixture of back-
orders and lost sales is considered. The lead time is
reducible by adding a crash cost. The buyer orders Q
units and the vendor delivers the order quantity to the
buyer over equal sized shipments. From each arriving
shipment, �Q/m items will be immediately inspected.
On average E(Z ) defective items will be discovered and
discarded. The remaining (Q/m)�E(Z ) units will be
entered into the inventory to meet customer demand.
In general, if � is the defect rate in a lot, then
E( pQ/m)�E(Z ) uninspected defective items will be
entered into the buyer’s inventory system.

3.1 The buyer’s expected total cost per unit time

Because the inventory system is continuously reviewed
by the buyer, successive shipments will arrive when the
inventory level drops to the reorder point r. As
mentioned earlier, we assumed that shortages are
allowed and the lead time demand X has a finite mean
DL and standard deviation �

ffiffiffiffi
L

p
. The reorder point is

r ¼ DLþ k�
ffiffiffiffi
L

p
, where k is the safety factor. The

expected shortage at the end of a shipping cycle is
given by E(X� r )þ. Thus, the expected number of
backorders and lost sales per shipping cycle are
�E(X� r )þ and (1� � )E(X� r )þ, respectively. For
each shipping cycle, the fixed shortage cost is
�E(X� r )þ and the lost sales is �0(1� � )E(X� r )þ.
Hence, the stock-out cost per shipping cycle is
[�þ�0(1� � )]E(X� r )þ.

Using the same approach in Montgomery et al.
(1973), the expected net inventory level just before
receipt of a shipment is r�DLþ (1� � )E(X� r )þ and
the expected inventory level at the beginning of a
shipping cycle, given that there are (Q/m)�E(Z )
items entering into buyer’s inventory system, is
(Q/m)�E(Z )þ r�DLþ (1�� )E(X� r )þ. Therefore,
the average inventory level over the shipping cycle can
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be approximated by (1/2)[(Q/m)�E(Z )]þ r�DLþ

(1� � )E(X� r )þ. Since the expected shipping cycle

length is [(Q/m)�E(Z )]/D, the holding cost per ship-

ping cycle is hb[(1/2)(Q/m)�E(Z ))þ r�DLþ

(1� � )E(X� r )þ]� [(Q/m)�E(Z )]/D.
Let Li be the length of lead time with components

1, 2, . . . , i crashed to their minimum duration, then Li

can be expressed as Li ¼
Pn

j¼1 bj �
Pi

j¼1 ðbj � ajÞ,

i ¼ 1, 2, . . . , n. Furthermore, for convenience, we let

L0 ¼
Pn

j¼1 bj. Thus, for L2 [Li,Li� 1], the lead time

crash cost per shipping cycle R(L ) is given by

RðLÞ ¼ ciðLi�1 � LÞ þ
Xi�1

j¼1

cjðbj � ajÞ: ð2Þ

Therefore, the expected total cost per shipping cycle

given that there are (Q/m)�E(Z ) units entering into

inventory is the sum of the ordering cost, transportation

cost, stock-out cost, inspecting cost, uninspected defect-

ive treatment cost, holding cost, and lead time crash

cost. The buyer’s expected total cost per shipping cycle

can be expressed as:

Cb ¼
Ab

m
þ Fþ ½�þ �0ð1� �Þ�EðX� rÞþ

þ y
�Q

m
þ w E

�Q

m

� �
� EðZÞ

� �

þ hb
1

2

Q

m
� EðZÞ

� �
þ r�DLþ ð1� �ÞEðX� rÞþ

� �

�
ðQ=mÞ � EðZÞ

D
þ RðLÞ: ð3Þ

Hence, the expected total cost per unit time is

ETCbðQ, r,L,mÞ

¼ Cb �
D

ðQ=mÞ � EðZÞ

¼
D

ðQ=mÞ � EðZÞ

(
Ab

m
þ Fþ ½�þ �0ð1� �Þ�EðX� rÞþ

þ y
�Q

m
þ RðLÞ

)
þ
Dw½Eð�Q=mÞ � EðZÞ�

ðQ=mÞ � EðZÞ

þ hb
1

2

Q

m
� EðZÞ

� �
þ r�DLþ ð1� �ÞEðX� rÞþ

� �
:

ð4Þ

For a given defective rate � in the entire lot, the number

of defective units in the sublot sampled is a random

variable, Z, which has a hypergeometric distribution

with parameters Q, � and �. That is, for given �, Z has a

hypergeometric probability mass function (p.m.f.):

PrðZ ¼ z �j Þ ¼
C �Q=m

z C
ðQ=mÞ�ð�Q=mÞ

ð�Q=mÞ�z

C
Q=m
�Q=m

ð5Þ

where 0� z�min{�Q/m, �Q/m}.
In this case,

EðZj�Þ ¼ � �Q=mð Þ: ð6Þ

Hence, the expected number of defective units is

EðZÞ ¼

Z 1

0

EðZj�Þgð�Þd� ¼
�M�Q

m
, ð7Þ

where M� ¼ Eð�Þ. Substituting equation (7) into

equation (4), we get

ETCbðQ, r,L,mÞ ¼
D

ðQ=mÞð1� �M�Þ

�
Ab

m
þ Fþ ��EðX� rÞþ þ RðLÞ

� �

þ
Dy�

1� �M�
þ
Dwð1� �ÞM�

1� �M�

þ hb
�
r�DLþ ð1� �ÞEðX� rÞþ

	
þ
hbQ

2m
1� �M�


 �
, ð8Þ

where �� ¼ �þ �0ð1� �Þ.

3.2 The vendor’s expected total cost per unit time

When the first Q/m units have been produced, the

vendor delivers them to the buyer. After that the vendor

makes the deliveries on average every [Q/m�E(Z )]/D

units of time until the inventory level falls to zero

(figure 1). Consequently, the expected total inventory

per production cycle for the vendor is

Q
Q

mP
þ ðm� 1Þ

Q=m� EðZÞ

D

� �
�
Q2

2P

� �

�
Q½Q=m� EðZÞ�

mD
1þ 2þ � � � þ ðm� 1Þ½ �

� �

¼
Q2

mP
þ
ðm� 1ÞQ½Q�mEðZÞ�

2mD
�
Q2

2P
: ð9Þ

The vendor’s expected total cost per production cycle

is the sum of the set-up cost and inventory holding cost.
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Hence, the vendor’s expected total cost per production
cycle can be expressed as

Cv ¼ Av þ hv
Q2

mP
þ
ðm� 1ÞQ½Q�mEðZÞ�

2mD
�
Q2

2P

� �
: ð10Þ

The expected length of production cycle is
[Q�mE(Z )]/D, hence the expected total cost per unit
time for the vendor is

ETCvðQ,mÞ ¼ Cv �
D

Q�mEðZÞ

¼
AvD

Q�mEðZÞ
þ

hvDQ2

Q�mEðZÞ

1

mP
�

1

2P

� �

þ
hvðm� 1ÞQ

2m
: ð11Þ

Substituting equation (7) into (11), we get

ETCvðQ,mÞ ¼
AvD

Qð1� �M�Þ
þ

hvDQ

1� �M�

1

mP
�

1

2P

� �

þ
hvðm� 1ÞQ

2m

¼
AvD

Qð1� �M�Þ
þ

hvQ

2mð1� �M�Þ

�
D

P
þ ðm� 1Þ 1� �M� �

D

P

� �� �
: ð12Þ

3.3 The joint expected total cost per unit time

Once the vendor and buyer have established a long-term
strategic partnership and contracted to commit the
relationship, they will jointly determine the best policy
for the integrated inventory system. The joint expected
total cost per unit time can be obtained as the sum of
the buyer’s and vendor’s expected total cost per unit
time. Furthermore, the nondefective items in each
shipment from vendor to buyer should meet the lead
time demand and safety stock requirement. That is,

ð1�M�ÞQ=m � DLþ k�
ffiffiffiffi
L

p
. Hence, our problem

becomes

minimize JETCðQ, r,L,mÞ

¼ ETCbðQ, r,L,mÞ þ ETCvðQ,mÞ

¼
D

Qð1� �M�Þ
Ab þ Av þm Fþ ��EðX� rÞþ þ RðLÞ

� 	� 

þ

Dy�

1� �M�
þ
Dwð1� �ÞM�

1� �M�

þ hb
�
r�DLþ ð1� �ÞEðX� rÞþ

	
þ
hbQ

2m
1� �M�


 �
þ

hvQ

2mð1� �M�Þ

D

P
þ ðm� 1Þ 1� �M� �

D

P

� �� �
,

subject to

ð1�M�ÞQ

m
� DLþ k�

ffiffiffiffi
L

p
: ð13Þ

4. Normal distribution model

In this section, we assumed that the lead time demand X

has a normal p.d.f. f (x ) with mean DL and standard
deviation �

ffiffiffiffi
L

p
. By Assumption 3, the reorder point

r ¼ DLþ k�
ffiffiffiffi
L

p
, hence the expected demand short at

the end of shipping cycle is given by

EðX� rÞþ ¼

Z 1

r

ðx� rÞ f ðxÞdx ¼ �
ffiffiffiffi
L

p
 ðkÞ,

where  ðkÞ � �ðkÞ � k½1��ðkÞ�, and �,( are the
standard normal p.d.f. and distribution function (d.f.),
respectively. Furthermore, we can also consider
the safety factor k as a decision variable instead of r

because r ¼ DLþ k�
ffiffiffiffi
L

p
. Therefore, model (13) can be

written as

minimize JETCNðQ, k,L,mÞ

¼
D

Qð1� �M�Þ

� Ab þ Av þm Fþ ���
ffiffiffiffi
L

p
 ðkÞ þ RðLÞ

h in o
þ

Dy�

1� �M�
þ

Dwð1� �ÞM�

1� �M�

� �
þ hb�

ffiffiffiffi
L

p
½kþ ð1� �Þ ðkÞ�

þ
hbQ

2m

� �
1� �M�


 �
þ

hvQ

2mð1� �M�Þ

� �
D

P
þ ðm� 1Þ 1� �M� �

D

P

� �� �� �
,

subject to

ð1�M�ÞQ

m
� DLþ k�

ffiffiffiffi
L

p
, ð14Þ

Quantity

Time

Q

D− E(Z )
m
Q

mP
Q

mQ/

mQ/

Figure 1. Vendor’s inventory level.
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where the subscript N in JETC denotes the normal

distribution case.
To solve this nonlinear programming problem, we

first ignore the restriction of ð1�M�ÞQ=m �

DLþ k�
ffiffiffiffi
L

p
and try to find the optimal value of

(Q, k,L,m) such that JETCN(Q, k,L,m) has a minimum

value. For fixed Q, k, and m, JETCN(Q, k,L,m) is

a concave function of L2 [Li,Li�1], because

@2JETCNðQ,k,L,mÞ

@L2

¼
�mD ��� ðkÞ

4Q½1� �M��
L�3=2�

hb�

4
½kþð1��Þ ðkÞ�L�3=2< 0:

ð15Þ

Thus, for fixed (Q, k,m), the minimum joint expected

total cost per unit time will occur at the end points of the

interval [Li,Li�1]. Furthermore, we can also prove that

JETCN (Q, k,L,m) is a convex function of m for fixed Q,

k, and L2 [Li,Li�1] (see appendix A).
Next, it can also be shown that for fixed m and

L2 [Li,Li�1], JETCN(Q, k,L,m) is a convex function in

(Q, k ) (see appendix B). Thus, for fixed m and

L2 [Li,Li�1], the minimum value of JETCN(Q, k,L,m)

will occur at the point (Q, k ) which satisfies

@JETCN(Q, k,L,m)/@Q¼ 0 and @JETCN(Q, k,L,m)/

@k¼ 0, simultaneously. Solving these two equations

gives

and

�ðkÞ ¼ 1�
hbQð1� �M�Þ

mD ��þ hbð1� �ÞQð1� �M�Þ
: ð17Þ

The optimal solutions Q and k for given m and L can
be obtained by solving equations (16) and (17)
iteratively until Q and k converges. This convergence
can be shown by adopting a graphical technique similar
to that used in Hadley and Whitin (1963).
We now consider the constraint

ð1�M�ÞQ=m � DLþ k�
ffiffiffiffi
L

p
. If ð1�M�ÞQ=m � DLþ

k�
ffiffiffiffi
L

p
holds, then (Q, k ) is an interior optimal solution

for given m and L2 [Li,Li�1]. However, if
ð1�M�ÞQ=m < DLþ k�

ffiffiffiffi
L

p
, we set the order quantity,

Q, equal to mðDLþ k�
ffiffiffiffi
L

p
Þ=ð1�M�Þ, then use

equation (17) to find safety factor k. Note that the
closed-form solution of (Q, k ) cannot be obtained
from equations (16) and (17). The following iterative
algorithm is established to obtain the optimal solution
of (Q, k,L,m).

Algorithm 1

Step 1: For each Li, i¼ 0, 1, . . . , n, perform (i) to Step 4.

(i) Start with mI¼ 1.
(ii) Set ki1¼ 0 (implies  (ki1)¼ 0.39894).
(iii) Substitute  (ki1) into equation (16) to evaluate Qi1.
(iv) Utilizing Qi1 to determine F(ki2) from equa-

tion (17), then finds ki2 by checking the standard

normal table, and hence  (ki2).
(v) Repeat (iii)–(iv) until no change occurs in the

values of Qi and ki.
(vi) Utilizing Qi and ki to determine new mI from

equation (A2).
(vii) Repeat (ii)–(vi) until no change occurs in the values

of Qi, ki and mI.

Step 2: Set mi1 ¼ mIb c and mi2 ¼ mIb c þ 1 where xb c

denotes the largest integer less than or equal to x.

(i) For mi1, repeat Step 1 (ii)–(v) until no change

occurs to find Qi1 and ki1.
(ii) For mi2, repeat Step 1 (ii)–(v) until no change

occurs to find Qi2 and ki2.

Step 3: Compare (1�M� )Qij/mij and DLi þ kij�
ffiffiffiffiffi
Li

p
,

j ¼ 1, 2.
If ð1�M�ÞQij=mij � DLi þ kij�

ffiffiffiffiffi
Li

p
, go to Step 4.

If ð1�M�ÞQij=mij < DLi þ kij�
ffiffiffiffiffi
Li

p
, let Qij ¼

mijðDLi þ kij�
ffiffiffiffiffi
Li

p
Þ=ð1�M�Þ and then determine new

kij from equation (17).

Step 4: Compute the corresponding JETCN(Qij, kij,
Li,mij ), j¼ 1, 2.

Let JETCN(Qi, ki,Li,mi )¼minj¼1,2 JETCN(Qij, kij,
Li,mij ).

Step 5: Find mini¼0,1,. . .,n JETCN(Qi, ki,Li,mi ).
Let JETCN(Q*, k*,L*,m* )¼mini¼0,1,. . .,n JETCN

(Qi, ki,Li,mi ), then (Q*, k*,L*,m* ) is the optimal
solution. And hence, the optimal reorder point
r� ¼ DL� þ k��

ffiffiffiffiffiffi
L�

p
follows.

5. Distribution-free model

In some situations, the information about the prob-
ability distribution of the lead time demand is limited.
Hence, in this section, we relaxed the restriction about
the form of the probability distribution of the lead time
demand and only assumed that it has given finite first
and second moments (and hence, mean and variance are
also known and finite); i.e. the p.d.f. f (x ) of X belongs

Q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mDfAb þ Av þm½Fþ ���

ffiffiffiffi
L

p
 ðkÞ þ RðLÞ�g

hbð1� �M�Þ
2
þ hv½ðD=PÞ þ ðm� 1Þð1� �M� � ðD=PÞÞ�

s
, ð16Þ
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to the class < of p.d.f.s with finite mean DL and

variance �2L. Since the probability distribution of X is

unknown, we cannot find the exact value of the expected

shortage quantity E(X� r )þ. Hence, we use the minimax

distribution-free approach to solve this problem.

The minimax distribution-free approach is to find the

most unfavorable p.d.f. f (x ) in < for each (Q, r,L,m)

and then minimize over (Q, r,L,m). That is, our problem

is to solve

min
Q, r,L,m

max
f ðxÞ2<

JETCðQ, r,L,mÞ,

subject to
ð1�M�ÞQ

m
� DLþ k�

ffiffiffiffi
L

p
: ð18Þ

To this end, we need the following proposition that was

asserted by Gallego and Moon (1993).

Proposition 1: For any f ðxÞ 2 <,

EðX� rÞþ �
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2Lþ ðr�DLÞ2

q
� ðr�DLÞ

� �
: ð19Þ

Furthermore, the upper bound of the above equation

is tight.

Because we have r ¼ DLþ k�
ffiffiffiffi
L

p
, and for any

probability distribution of the lead time demand X,

the above inequality always holds. Then, using model

(13) and inequality (19), and considering the safety

factor k as a decision variable instead of r, model (18) is

reduced to

minimize JETCUðQ,k,L,mÞ

¼
D

Qð1� �M�Þ

� Ab þAv þm Fþ
���

ffiffiffiffi
L

p
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p
� kÞ

2
þRðLÞ

" #( )

þ
Dy�

1� �M�
þ
Dwð1� �ÞM�

1� �M�

þ hb�
ffiffiffiffi
L

p
kþ ð1� �Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p
� k

2

" #

þ
hbQ

2m
1� �M�


 �
þ

hvQ

2mð1� �M�Þ

�
D

P
þ ðm� 1Þ 1� �M� �

D

P

� �� �
,

subject to

ð1�M�ÞQ

m
� DLþ k�

ffiffiffiffi
L

p
, ð20Þ

where the subscript U in JETC denotes the distribution-
free case.

By analogous arguments to the normal distribution
demand case, it can be verified that for fixed (Q, k,m),
JETCU(Q, k,L,m) is a concave function in L2 [Li,Li�1].
Hence, for fixed (Q, k,m), the minimum value of the
joint expected total cost will occur at the end points of
the interval [Li,Li�1]. JETCU(Q, k,L,m) can also be
proven to be a convex function of m for fixed Q, k and
L2 [Li, Li�1], then the local minimum of JETCU

(Q, k,L,m) turns out to be the global minimum of
JETCU(Q, k,L,m). Furthermore, for fixed m and
L2 [Li, Li�1], it can also be shown that JETCU

(Q, k,L,m) is a convex function in Q and k. Therefore,
for fixed m and L2 [Li, Li�1], the minimum value of
JETCU(Q, k,L,m) will occur at the point (Q, k ) which
simultaneously satisfies @JETCU(Q, k,L,m)/@Q¼ 0 and
@JETCU (Q, k,L,m)/@k¼ 0. The resulting solutions are

and

kffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p ¼ 1�
2hbQð1� �M�Þ

mD ��þ hbð1� �ÞQð1� �M�Þ
: ð22Þ

An algorithm procedure similar to that proposed in
section 4 can be used to obtain the optimal solution

(Q**, k**,L**,m**).

6. Effects of the parameters

(1) From model (14), we can see that the objective

function has a minimum value when �¼ 1 (i.e.
complete backordered case) and a maximum

value when �¼ 0 (i.e. complete lost sales case).
Hence, for 0<�<1, JETC�¼1< JETC�<

JETC�¼0. The distribution-free model has the
same result.

(2) Note that �� ¼ �þ �0ð1� �Þ. When �¼ 1, equa-
tion (16) becomes

Q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mD Ab þ Av þm Fþ ���

ffiffiffiffi
L

p
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p
� kÞ=2


 �
þ RðLÞ

� 	� 

hbð1� �M�Þ

2
þ hv½ðD=PÞ þ ðm� 1Þð1� �M� � ðD=PÞÞ�

s
, ð21Þ

Q�¼1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mDfAb þ Av þm½Fþ ��

ffiffiffiffi
L

p
 ðkÞ þ RðLÞ�g

hb 1� �M�


 �2
þ hv ðD=PÞ þ ðm� 1Þ 1� �M� � ðD=PÞ


 �� 	
vuut : ð23Þ
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When �¼ 0, equation (16) becomes

Hence, for fixed k, m and L2 [Li,Li�1], comparing
equations (16), (23) and (24), we get
Q�¼1<Q�<Q�¼0. That is, the order quantity Q
decreases as the backorder rate � increases for
fixed k,m and L2 [Li,Li�1]. The distribution-free
model has the same result.

(3) Note that �� ¼ �þ �0ð1� �Þ. When �¼ 1, equa-
tion (17) becomes

�ðkÞ�¼1 ¼ 1�
hbQð1� �M�Þ

mD�
: ð25Þ

When �¼ 0, equation (17) becomes

�ðkÞ�¼0 ¼ 1�
hbQð1� �M�Þ

mDð�þ �0Þ þ hbQð1� �M�Þ
: ð26Þ

Hence, for fixed Q,m and L2 [Li,Li�1], comparing
equations (17), (25) and (26), we get
F(k )�¼1<F(k )�<F(k )�¼0 which implies
k�¼1< k�< k�¼0, or equivalently,
r�¼1< r�< r�¼0. That is, the reorder point r
decreases as the backorder rate � increases for
fixed Q, m and L2 [Li,Li�1].

(4) Under the assumption that the lead time demand
follows normal distribution, for fixed �, m and
L2 [Li,Li�1], taking the derivative of equation (16)
with respect to k, we have

Note that F(k )� 1<0, hence dQ/dk<0. That is,
safety factor k (or reorder point r ) and order quantity
Q have negative relative relation. Decreasing safety
factor (or reorder point) will increase the order
quantity. Also, the distribution-free model has the
same result.

7. Numerical examples

Example 1: Consider an inventory system with
normally distributed demand during the lead time and
the following parameter values: D¼ 1000 units/year,
P¼ 3200 units/year, Ab¼ $25/order, Av¼ $400/set-up,

hb¼ $5/unit/year, hv¼ $4/unit/year, �¼ 7units/week,

and the lead time has three components with data
shown in table 1 (Banerjee 1986, Goyal 1988, Ouyang
et al. 1999a, Pan and Yang 2002). It is assumed 1 year ¼
52 weeks and 1 week¼ 7 days here. Besides, we take
y¼ $1.6/unit, w¼ $10/defective unit, �¼ 0.1, �¼ $10/
unit, �0¼ $20/unit, and F¼ $15/shipment. The defective
rate � has a Beta distribution with parameters s¼ 1 and
t¼ 9; that is, the p.d.f. of � is given by g(� )¼ 9(1� � )8,
0< �<1. Hence, M�¼ s/(sþt )¼ 0.1.

Applying Algorithm 1 procedure yields the results
shown in table 2 for �¼ 0, 0.5, 0.8 and 1. From table 2,
the optimal inventory policy can be found by comparing
JETCN(Qi, ki,Li,mi ), and a summary is presented in
table 3. Table 3 shows that the reorder point (r*), safety
factor (k*), the joint expected total cost per unit time
(JETCN ) decrease, whereas the order quantity (Q*)
increases as the backorder rate (� ) increases. This
implies that the backorder rate and reorder point have a
relatively negative relationship. The reorder point and
order quantity also have a relatively negative relation-
ship. Furthermore, we can see that the joint expected
total cost per unit time has the minimum value at the
complete backordered case (i.e. �¼ 1) and the maximum
value at the complete lost sales case (i.e. �¼ 0).

Example 2: In this example, we want to confirm the
effects of taking the reorder point r as a decision
variable. The data and assumptions are the same as in

Example 1, except that we assume the arrival lot

contains no defective items. Therefore, here we take

y¼ $0 and M�¼ 0. The computational results are

presented in table 4 which shows that our model

dQ

dk
¼

1

Q
�

m2D ���
ffiffiffiffi
L

p
½�ðkÞ � 1�

hb 1� �M�


 �2
þ hv ðD=PÞ þ ðm� 1Þ 1� �M� � ðD=PÞ


 �� 	 : ð27Þ

Q�¼0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mDfAb þ Av þm½Fþ ð�þ �0Þ�

ffiffiffiffi
L

p
 ðkÞ þ RðLÞ�g

hb 1� �M�


 �2
þ hv ðD=PÞ þ ðm� 1Þ 1� �M� � ðD=PÞ


 �� 	
vuut : ð24Þ

Table 1. Lead time data.

Lead time
component i

Normal
duration
bi (days)

Minimum
duration
ai (days)

Unit crash
cost ci ($/day)

1 20 6 0.1
2 20 6 1.2

3 16 9 5.0
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provides lower cost compared with that in Pan and
Yang (2002). These results reveal that taking the reorder
point as a decision variable will improve the joint total
expected cost significantly.

Example 3: The data are as in Example 1 except the
probability distribution of the lead time demand is free.
A summary of the optimal results is presented in table 5,
which shows that the safety factor and the joint expected
total cost per unit time decrease as the backorder rate
increases. Similar to Example 1, table 5 reveals that
the joint expected total cost per unit time has
the minimum value at the complete backordered case
(i.e. �¼ 1) and the maximum value at the complete lost
sales case (i.e. �¼ 0).

From Examples 1 and 3, we can compare the results
of the worst case distribution against the normal
distribution. The joint expected total cost

JETCN(Q**, k**,L**,m** ) can be obtained by sub-
stituting (Q**, k**,L**,m** ) in table 5 into model (14),
in which the lead time demand is normally distributed.
The expected value of additional information (EVAI)
is the largest amount for a buyer that he/she is
willing to pay for the information about the form of
the lead time demand distribution which is equal
to JETCN(Q**, k**,L**,m**)� JETCN(Q*, k*,L*,m*).
The EVAI concept in the distribution free approach is
the original work of Gallego and Moon (1993) and has
been expanded by many researchers. The comparatively
small EVAI value reveals that the minimax decision
criterion is a good approach. Computation results are
shown in table 6 which reveals that the EVAI decreases
as the backorder rate � increases.

Table 2. The results of solution procedure in Example 1.

JETCN

� i Li Qi ri ki mi (Qi, ki,Li,mi)

0.0 0 8 553 195 2.10 5 $3176.68
1 6 555 151 2.10 5 $3156.82
2 4 566 105 2.00 4 $3252.78

3 3 577 80 1.87 3 $3433.73
0.5 0 8 553 192 1.93 5 $3161.60

1 6 556 148 1.92 5 $3143.74

2 4 567 102 1.82 4 $3241.73
3 3 578 78 1.68 3 $3423.70

0.8 0 8 554 189 1.76 5 $3147.54
1 6 556 146 1.76 5 $3131.56

2 4 567 100 1.65 4 $3231.38
3 3 578 76 1.50 3 $3414.23

1.0 0 8 555 186 1.60 5 $3133.47

1 6 557 143 1.60 5 $3119.37
2 4 568 98 1.47 4 $3220.97
3 3 579 74 1.31 3 $3404.61

Li in weeks.

Table 3. Optimal solutions of Example 1.

JETCN

� m* Q* r* k* L* (Q*, k*,L*,m*)

0.0 5 555 151 2.10 6 $3156.82
0.5 5 556 148 1.92 6 $3143.74
0.8 5 556 146 1.76 6 $3131.56

1.0 5 557 143 1.60 6 $3119.37

L* in weeks.

Table 4. Summary of the comparisons.

JETCN

� m* Q* k* L* (Q*, k*,L*,m*)

Pan and

Yang’s model

– 4 132 2.33

(fixed)

6 $2114.33

This model

(with y¼ 0

and M�¼ 0)

0.0 5 551 2.10 6 $2081.40

0.5 5 552 1.92 6 $2068.33
0.8 5 552 1.76 6 $2056.14
1.0 5 553 1.60 6 $2043.94

L* in weeks.

Table 6. Comparison of the two procedures.

JETCN JETCN

� (Q**, k**,L**,m**) (Q*, k*,L*,m*) EVAI

0.0 $3254.94 $3156.82 98.12
0.5 $3211.34 $3143.74 67.60
0.8 $3183.93 $3131.56 52.37

1.0 $3135.68 $3119.37 16.31

Table 5. Optimal solutions of Example 3.

JETCN

� m** Q** r** k** L** (Q**, k**,L**,m**)

0.0 3 563 162 2.73 6 $3505.37
0.5 3 551 153 2.20 6 $3410.82
0.8 3 542 146 1.80 6 $3340.64

1.0 4 573 144 1.67 6 $3279.05

L** in weeks.
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8. Concluding remarks

This paper examined the effects of a sublot sampled
inspection policy and controllable lead time on inte-
grated vendor–buyer inventory models with defective
items. We first assumed that the lead time demand
followed a normal distribution. We then relaxed the
assumption about the probability distributional form
for the lead time demand and applied the minimax
distribution-free procedure to solve the problem. We
minimize the joint expected total cost per unit time by

simultaneously optimizing the order quantity, reorder
point, lead time and the number of shipments delivered
from the vendor to the buyer.
The sensitivity analysis and numerical example results

indicated that the safety factor and the joint expected
total cost per unit time decrease as the backorder rate
increase regardless of the distribution form of lead-time
demand. The results also showed that the joint expected
total cost per unit time is the smallest in the complete
backordered case and the largest in the complete lost
sales case.
The proposed models focused on the basic integrated

inventory model, in which the joint expected total cost
is simply the sum of the vendor’s and buyer’s costs.
It is interesting to consider different economic equili-
brium solutions in forming the joint expected total
cost, such as Stackelberg (equilibrium), Pareto
efficient scheme or Nash bargaining approach to
determine the best cooperative program.
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Appendix

A: For fixed Q, k, and L, JETCN(Q, k,L,m ) is convex

in m

To simplify the proof, m is treated as a real number.
Taking the partial derivatives of JETCN(Q, k,L,m) with

respect to m, we have

@JETCNðQ, k,L,mÞ

@m

¼
D

Qð1� �M�Þ
Fþ ���

ffiffiffiffi
L

p
 ðkÞ þ RðLÞ

h i

�
hbQ

2m2
1� �M�


 �
þ

hvQ

2m2
1�

2D

Pð1� �M�Þ

� �
: ðA1Þ

Set @JTECNðQ, k,L,mÞ=@m ¼ 0, we can obtain

Because

@2JETCNðQ, k,L,mÞ

@m2

����
m¼mI

¼
2D

mIQð1� �M�Þ
Fþ ���

ffiffiffiffi
L

p
 ðkÞ þ RðLÞ

h i
> 0, ðA3Þ

JETCN(Q, k,L,m) is convex in m for fixed Q, k, and L.

B: To proof JETCN(Q,k,L,m ) is a convex function in

(Q, k ), for fixed m and L[ [Li,Li�1]

When the lead time demand follows a normal distribu-
tion, the joint expected total cost per unit time is

JETCNðQ, k,L,mÞ

¼
DðAb þ AvÞ

Qð1� �M�Þ
þ

mD

Qð1� �M�Þ
Fþ ���

ffiffiffiffi
L

p
 ðkÞ þ RðLÞ

n o

þ
Dy�

1� �M�
þ
Dwð1� �ÞM�

1� �M�
þ hb�

ffiffiffiffi
L

p
½kþ ð1� �Þ ðkÞ�

þ
hbQ

2m
1� �M�


 �
þ

hvQ

2mð1� �M�Þ

�
D

P
þ ðm� 1Þ 1� �M� �

D

P

� �� �
:

For fixed m and L2 [Li,Li�1], taking the second partial
derivatives of JETCN(Q, k,L,m) with respect to Q and k
yields

@2JETCNðQ, k,L,mÞ

@Q2
¼

2DðAb þ AvÞ

Q3ð1� �M�Þ

þ
2mDfFþ ���

ffiffiffiffi
L

p
 ðkÞ þ RðLÞg

Q3ð1� �M�Þ

> 0, ðB1Þ

mI ¼
hbQ

2ð1� �M�Þ
2
� hvQ

2ð1� �M�Þ½1� 2D=ðPð1� �M�ÞÞ�

2D½Fþ ���
ffiffiffiffi
L

p
 ðkÞ þ RðLÞ�

� �1=2

: ðA2Þ
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@2JETCNðQ, k,L,mÞ

@k2
¼

mD ���
ffiffiffiffi
L

p

Qð1� �M�Þ
�ðkÞ

þ hb�
ffiffiffiffi
L

p
ð1� �Þ�ðkÞ > 0, ðB2Þ

and

@2JETCNðQ, k,L,mÞ

@k@Q
¼
@2JETCNðQ, k,L,mÞ

@Q@k

¼
�mD ���

ffiffiffiffi
L

p

Q2ð1� �M�Þ
�ðkÞ � 1½ �: ðB3Þ

From equations (B1), (B2) and (B3), we obtain

@2JETCNðQ, k,L,mÞ

@Q2
�
@2JETCNðQ, k,L,mÞ

@k2

�
@2JETCNðQ, k,L,mÞ

@k@Q

� �2

¼
2D2m ���

ffiffiffiffi
L

p
�ðkÞðAb þ Av þmFþmRðLÞÞ

Q4ð1� �M�Þ
2

þ
2Dhb�

ffiffiffiffi
L

p
ð1� �Þ�ðkÞ

Q3ð1� �M�Þ

� Ab þ Av þm Fþ ���
ffiffiffiffi
L

p
 ðkÞ þ RðLÞ

h in o

þ
ðDm ���

ffiffiffiffi
L

p
Þ
2

Q4ð1� �M�Þ
2

2�ðkÞ ðkÞ � ½�ðkÞ � 1�2
� 


> 0,

because �(k )>0,  (k )>0 and 2�(k ) (k )�
[F(k )� 1]2>0, for all k>0 (the proof see Ouyang
et al. 1999a). Therefore, for fixed m and L2 [Li,Li�1],
JETCN(Q, k,L,m) is a convex function in (Q, k ).

References

Z.T. Balkhi, ‘‘An optimal solution of a general lot size inventory
model with deteriorated and imperfect products, taking into account
inflation and time value of money’’, Int. J. Sys. Sci., 35, pp. 87–96,
2004.

A. Banerjee, ‘‘A joint economic-lot-size model for purchaser and
vendor’’, Dec. Sci., 17, pp. 292–311, 1986.

M. Ben-Daya and A. Raouf, ‘‘Inventory models involving lead time as
a decision variable’’, J. Oper. Res. Soc., 45, pp. 579–582, 1994.

H.C. Chang, ‘‘Fuzzy opportunity cost for EOQ model with quality
improvement investment’’, Int. J. Sys. Sci., 34, pp. 395–402, 2003.

G. Gallego and I. Moon, ‘‘The distribution free newsboy
problem: review and extensions’’, J. Oper. Res. Soc., 44,
pp. 825–834, 1993.

S.K. Goyal, ‘‘An integrated inventory model for a single supplier-
single customer problem’’, Int. J. Prod. Res., 15, pp. 107–111,
1976.

S.K. Goyal, ‘‘A joint economic-lot-size model for purchaser and
vendor: a comment’’, Dec. Sci., 19, pp. 236–241, 1988.

S.K. Goyal and F. Nebebe, ‘‘Determination of economic production-
shipment policy for a single-vendor-single-buyer system’’, Eur. J.
Oper. Res., 121, pp. 175–178, 2000.

D. Ha and S.L. Kim, ‘‘Implementation of JIT purchasing: an
integrated approach’’, Prod. Plann. Contr., 8, pp. 152–157, 1997.

G. Hadley and T. Whitin, Analysis of Inventory Systems, New Jersey:
Prentice-Hall, 1963.

R.M. Hill, ‘‘The optimal production and shipment policy for
the single-vendor single-buyer integrated production-inventory
problem’’, Int. J. Prod. Res., 37, pp. 2463–2475, 1999.

K.-L. Hou and L.-C. Lin, ‘‘Optimal production run length and capital
investment in quality improvement with an imperfect production
process’’, Int. J. Sys. Sci., 35, pp. 133–137, 2004.

C.K. Huang, ‘‘An integrated vendor–buyer cooperative inventory
model for items with imperfect quality’’, Prod. Plann. Contr., 13,
pp. 355–361, 2002.

P. Kelle, F. Al-khateeb and P.A. Miller, ‘‘Partnership and negotiation
support by joint optimal ordering/setup policies for JIT’’, Int. J.
Prod. Econ., 81–82, pp. 431–441, 2003.

M. Khouja, ‘‘The impact of quality considerations on material flow in
two-stage inventory systems’’, Int. J. Prod. Res., 41, pp. 1533–1547,
2003.

C.J. Liao and C.H. Shyu, ‘‘An analytical determination of lead time
with normal demand’’, Int. J. Oper. Prod. Manag., 11, pp. 72–78,
1991.

I. Moon and E. Silver, ‘‘The multi-item newsvendor problem with a
budget constraint and fixed ordering costs’’, J. Oper. Res. Soc., 51,
pp. 602–608, 2000.

D.C. Montgomery, M.S. Bazaraa and A.I. Keswani, ‘‘Inventory
models with a mixture of backorders and lost sales’’, Nav. Res. Log.,
20, pp. 255–263, 1973.

L.Y. Ouyang and H.C. Chang, ‘‘Lot size reorder point inventory
model with controllable lead time and set-up cost’’, Int. J. Sys. Sci.,
33, pp. 635–642, 2002.

L.Y. Ouyang and B.R. Chuang, ‘‘A periodic review inventory model
involving variable lead time with a service level constraint’’, Int. J.
Sys. Sci., 31, pp. 1209–1215, 2000.

L.Y. Ouyang and K.S. Wu, ‘‘A minimax distribution free procedure
for mixed inventory model with variable lead time’’, Int. J. Prod.
Econ., 56–57, pp. 511–516, 1998.

L.Y. Ouyang, C.K. Chen and H.C. Chang, ‘‘Lead time and ordering
cost reductions in continuous review inventory systems with partial
backorders’’, J. Oper. Res. Soc., 50, pp. 1272–1279, 1999a.

L.Y. Ouyang, B.R. Chuang and K.S. Wu, ‘‘Optimal inventory policies
involving variable lead time with defective items’’, Opsearch, 36,
pp. 374–389, 1999b.

L.Y. Ouyang, N.C. Yeh and K.S. Wu, ‘‘Mixture inventory model with
backorders and lost sales for variable lead time’’, J. Oper. Res. Soc.,
47, pp. 829–832, 1996.

M.J. Paknjad, F. Nasri and J.F. Affisco, ‘‘Defective units in a
continuous review (s,Q) system’’, Int. J. Prod. Res., 33,
pp. 2767–2777, 1995.

C.-H.J. Pan and Y.C. Hsiao, ‘‘Inventory models with back-order
discounts and variable lead time’’, Int. J. Sys. Sci., 32, pp. 925–929,
2001.

Integrated vendor–buyer inventory system 349



C.-H.J. Pan and J.S. Yang, ‘‘A study of an integrated inventory
with controllable lead time’’, Int. J. Prod. Res., 40, pp. 1263–1273,
2002.

C.-H.J. Pan, M.C. Lo and Y.C. Hsiao, ‘‘Optimal reorder point
inventory models with variable lead time and backorder
discount considerations’’, Eur. J. Oper. Res., 158, pp. 488–505,
2004.

S. Papachristos and I. Konstantaras, ‘‘Economic ordering quantity
models for items with imperfect quality’’, Int. J. Prod. Econ., 100,
pp. 148–154, 2006.

E.L. Porteus, ‘‘Optimal lot sizing, process quality improvement and
setup cost reduction’’, Oper. Res., 34, pp. 137–144, 1986.

M.J. Rosenblatt and H.L. Lee, ‘‘Economic production cycles
with imperfect production processes’’, IIE Trans., 17, pp. 48–54,
1986.

M.K. Salameh and M.Y. Jaber, ‘‘Economic production quantity
model for items with imperfect quality’’, Int. J. Prod. Econ., 64,
pp. 59–64, 2000.

H. Scarf, ‘‘A min-max solution of an inventory problem’’, Studies in
the Mathematical Theory of Inventory and Production, Stanford, CA:
Stanford University Press, 1958.

R.L. Schwaller, ‘‘EOQ under inspection costs’’, Prod. Inv. Manag. J.,
29, pp. 22–24, 1988.

E. Silver and I. Moon, ‘‘The multi-item single period problem with an
initial stock of convertible units’’, Eur. J. Oper. Res., 132,
pp. 466–477, 2001.

R.J. Tersine, Principles of Inventory and Materials Management,
New York: North-Holland, 1994.

K.S. Wu and L.Y. Ouyang, ‘‘Defective units in (Q, r, L) inventory
model with sublot sampling inspection’’, Prod. Plann. Contr., 11,
pp. 179–186, 2000.

K.S. Wu and L.Y. Ouyang, ‘‘ (Q, r, L) inventory model with defective
items’’, Comp. Ind. Engng, 39, pp. 173–185, 2001.

G. Yang, R.J. Ronald and P.Chu, ‘‘Inventory models with variable
lead time and present value’’, Eur. J. Oper. Res., 164, pp. 358–366,
2005.

Kun-Shan Wu is a Professor in the Department of Business Department at Tamkang University in
Taiwan. He earned his PhD from the Graduate Institute of Management Sciences at Tamkang
University in Taiwan. His research interests are in the field of production/inventory control, and
supply chain management. He has published articles in Asia-Pacific Journal of Operational Research,
Computers & Industrial Engineering, Computers & Operations Research, European Journal of
Operational Research, International Journal of Advanced Manufacturing Technology, International
Journal of Information and Optimization Sciences, International Journal of Production Economics,
International Journal of Systems Science, Journal of the Operational Research Society, Production
Planning and Control, Quality & Quantity and others.

Liang-Yuh Ouyang is a Professor in the Department of Management Sciences & Decision Making at
Tamkang University in Taiwan. He earned his BS in Mathematical Statistics, MS in Mathematics
and PhD in Management Sciences from Tamkang University. His research interests are in the field of
Production/Inventory Control, Probability and Statistics. He has publications in Journal of the
Operational Research Society, Computers & Operations Research, European Journal of Operational
Research, Computers and Industrial Engineering, International Journal of Production Economics, IEEE
Transactions on Reliability, Sankhy, Metrika, Production Planning & Control, Journal of the
Operations Research Society of Japan,Opsearch, Journal of Statistics &Management Systems, Journal
of Interdisciplinary Mathematics, International Journal of Systems Science, Yugoslav Journal of
Operations Research, The Engineering Economist, Mathematical and Computer Modelling,
International Journal of Information and management Sciences, Applied Mathematical Modelling,
International Journal of Advanced Manufacturing Technology, Applied Mathematical and
Computation, Asia-Pacific Journal of Operational Research, and Journal of Global Optimization.

Chia-Huei Ho is an Associate Professor in the Department of Computer Science and Information
Engineering at Ming Chuan University in Taiwan. She earned her MS in Operations Research from
George Washington University, USA, and PhD in Management Sciences from Tamkang University
in Taiwan. Her research interests are in the field of production/inventory control and supply chain
management. She has published articles in European Journal of Operational Research, International
Journal of Production Economics, Asia-Pacific Journal of Operational Research, International Journal
of Advanced Manufacturing Technology, and International Journal of Information and Management
Sciences.

350 K.-S. Wu et al.


